search for




 

Review Article
Immunotherapy in Pediatric Solid Tumors
Clin Pediatr Hematol Oncol 2020;27:22-31.
Published online April 30, 2020
© 2020 Korean Society of Pediatric Hematology-Oncology

Jung Yoon Choi

Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea
Correspondence to: Jung Yoon Choi
Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
Tel: +82-2-2072-0211
Fax: +82-2-743-3455
E-mail: brille82@snu.ac.kr
ORCID ID: orcid.org/0000-0001-8758-3074
Received April 4, 2020; Revised April 17, 2020; Accepted April 21, 2020.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The survival rates for pediatric patients with solid tumors have improved dramatically in recent decades. However, patients with metastatic disease at diagnosis or progressive solid tumors still have a poor prognosis. Recently, immunotherapy has emerged as a novel therapeutic strategy in the pediatric population. Although not widely used in Korea, the anti-GD2 treatment in neuroblastoma is one of the successes of immunotherapy. In addition, many early phase clinical trials for monoclonal and bispecific antibodies, immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cell therapy and cancer vaccines are ongoing. According to results reported so far, a majority of pediatric solid tumors showed limited response to ICIs, except Hodgkin lymphoma and hypermutant pediatric tumors. These results indicate that children and adolescents need to be applied different immunotherapeutic approaches from adults. The aim of this review is to understand the immunological environment and immunotherapeutic challenges in pediatric solid tumors.
Keywords: Immunotherapy, Pediatric, Solid tumor, Immune checkpoint inhibitor, Chimeric antigen receptor T cell
Figures
Fig. 1. Schematic diagrams of the mechanisms of action of CTLA-4, PD-1 and PD-L1 blockade with or without chimeric antigen receptor T cell (CAR-T) therapy [36,58]. (A) T-cell activation, attenuation by normal inhibitory signals, and negative regulation using anti-CTLA-4, anti-PD-1 or anti-PD-L1 antibody therapy. (B) CAR-mediated activation, attenuation by tumor and checkpoint mediated inhibitory signals. Checkpoint receptor binding and checkpoint ligand blocking antibodies may synergize with chimeric antigen receptor therapy. APC, antigen presenting cell; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; PD-1, programmed cell death receptor; PD-L1, programmed death-ligand 1; TAA, tumor-associated antigen; TCR, T-cell receptor.
References
  1. Park HJ, Moon EK, Yoon JY, et al. Incidence and survival of childhood cancer in Korea. Cancer Res Treat 2016;48:869-82.
    Pubmed KoreaMed CrossRef
  2. Hutzen B, Ghonime M, Lee J, et al. Immunotherapeutic challenges for pediatric cancers. Mol Ther Oncolytics 2019;15:38-48.
    Pubmed KoreaMed CrossRef
  3. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017;14:717-34.
    Pubmed CrossRef
  4. Marayati R, Quinn CH, Beierle EA. Immunotherapy in pediatric solid tumors-A systematic review. Cancers (Basel) 2019;11.
    Pubmed KoreaMed CrossRef
  5. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009;86:1065-73.
    Pubmed CrossRef
  6. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010;22:231-7.
    Pubmed CrossRef
  7. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 2016;37:208-20.
    Pubmed KoreaMed CrossRef
  8. Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 2013;5:200ra116.
    Pubmed KoreaMed CrossRef
  9. Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends Immunol 2017;38:542-57.
    Pubmed CrossRef
  10. Wei F, Zhong S, Ma Z, et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A 2013;110:E2480-9.
    Pubmed KoreaMed CrossRef
  11. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW. Cancer genome landscapes. Science 2013;339:1546-58.
    Pubmed KoreaMed CrossRef
  12. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214-8.
    Pubmed KoreaMed CrossRef
  13. Zhang J, Walsh MF, Wu G, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 2015;373:2336-46.
    Pubmed KoreaMed CrossRef
  14. Dupain C, Harttrampf AC, Urbinati G, Geoerger B, MassaadMassade L. Relevance of fusion genes in pediatric cancers:Toward precision medicine. Mol Ther Nucleic Acids 2017;6:315-26.
    Pubmed KoreaMed CrossRef
  15. Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042-56 e10.
  16. Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009;15:5323-37.
    Pubmed KoreaMed CrossRef
  17. Schramm A, Koster J, Assenov Y, et al. Mutational dynamics between primary and relapse neuroblastomas. Nat Genet 2015;47:872-7.
    Pubmed CrossRef
  18. Wilson NS, Yang B, Yang A, et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 2011;19:101-13.
    Pubmed CrossRef
  19. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun 2012;12:14.
    Pubmed CrossRef
  20. Dobrenkov K, Cheung NK. GD2-targeted immunotherapy and radioimmunotherapy. Semin Oncol 2014;41:589-612.
    Pubmed KoreaMed CrossRef
  21. Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010;363:1324-34.
    Pubmed KoreaMed CrossRef
  22. Ladenstein R, Potschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol 2018;19:1617-29.
    Pubmed CrossRef
  23. Park JA, Cheung NV. Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol 2020:JCO1901410.
    Pubmed CrossRef
  24. Henney CS, Kuribayashi K, Kern DE, Gillis S. Interleukin-2 augments natural killer cell activity. Nature 1981;291:335-8.
    Pubmed CrossRef
  25. Mody R, Naranjo A, Van Ryn C, et al. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an openlabel, randomised, phase 2 trial. Lancet Oncol 2017;18:946-57.
    Pubmed KoreaMed CrossRef
  26. Wu Z, Cheung NV. T cell engaging bispecific antibody (TBsAb):From technology to therapeutics. Pharmacol Ther 2018;182:161-75.
    Pubmed KoreaMed CrossRef
  27. von Stackelberg A, Locatelli F, Zugmaier G, et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol 2016;34:4381-9.
    Pubmed CrossRef
  28. Cheng M, Ahmed M, Xu H, Cheung NK. Structural design of disialoganglioside GD2 and CD3-bispecific antibodies to redirect T cells for tumor therapy. Int J Cancer 2015;136:476-86.
    Pubmed KoreaMed CrossRef
  29. Cheng M, Santich BH, Xu H, Ahmed M, Huse M, Cheung NK. Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors. Oncoimmunology 2016;5:e1168557.
    Pubmed KoreaMed CrossRef
  30. Kebenko M, Goebeler ME, Wolf M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE(R)) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018;7:e1450710.
    Pubmed KoreaMed CrossRef
  31. Ring EK, Markert JM, Gillespie GY, Friedman GK. Checkpoint proteins in pediatric brain and extracranial solid tumors:Opportunities for immunotherapy. Clin Cancer Res 2017;23:342-50.
    Pubmed KoreaMed CrossRef
  32. Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer:Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015;35 Suppl:S185-S98.
    Pubmed CrossRef
  33. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.
    Pubmed KoreaMed CrossRef
  34. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015;348:56-61.
    Pubmed CrossRef
  35. Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science 2006;313:1972-5.
    Pubmed CrossRef
  36. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018;8:1069-86.
    Pubmed CrossRef
  37. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-8.
    Pubmed CrossRef
  38. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027-34.
    Pubmed KoreaMed CrossRef
  39. Majzner RG, Simon JS, Grosso JF, et al. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer 2017;123:3807-15.
    Pubmed CrossRef
  40. Davis KL, Fox E, Merchant MS, et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, singlearm, phase 1-2 trial. Lancet Oncol 2020;21:541-50.
    Pubmed CrossRef
  41. Geoerger B, Kang HJ, Yalon-Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol 2020;21:121-33.
    Pubmed CrossRef
  42. Grobner SN, Worst BC, Weischenfeldt J, et al. The landscape of genomic alterations across childhood cancers. Nature 2018;555:321-7.
    Pubmed CrossRef
  43. Haworth KB, Leddon JL, Chen CY, Horwitz EM, Mackall CL, Cripe TP. Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer 2015;62:571-6.
    Pubmed KoreaMed CrossRef
  44. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015;282:20143085.
    Pubmed KoreaMed CrossRef
  45. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-54.
    Pubmed KoreaMed CrossRef
  46. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014;20:5064-74.
    Pubmed KoreaMed CrossRef
  47. Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 2015;5:43-51.
    Pubmed KoreaMed CrossRef
  48. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014;515:563-7.
    Pubmed KoreaMed CrossRef
  49. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124-8.
    Pubmed KoreaMed CrossRef
  50. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138:2073-87 e3.
    Pubmed KoreaMed CrossRef
  51. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-20.
    Pubmed KoreaMed CrossRef
  52. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409-13.
    Pubmed KoreaMed CrossRef
  53. Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013;45:136-44.
    Pubmed KoreaMed CrossRef
  54. Noskova H, Kyr M, Pal K, et al. Assessment of tumor mutational burden in pediatric tumors by real-life whole-exome sequencing and in silico simulation of targeted gene panels:How the choice of method could affect the clinical decision? Cancers (Basel) 2020;12.
    Pubmed KoreaMed CrossRef
  55. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptorexpressing T cells. Immunol Rev 2014;257:107-26.
    Pubmed KoreaMed CrossRef
  56. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439-48.
    Pubmed KoreaMed CrossRef
  57. Pearson ADJ, Scobie N, Norga K, et al. ACCELERATE and European Medicine Agency Paediatric Strategy Forum for medicinal product development for mature B-cell malignancies in children. Eur J Cancer 2019;110:74-85.
    Pubmed CrossRef
  58. Schultz LM, Majzner R, Davis KL, Mackall C. New developments in immunotherapy for pediatric solid tumors. Curr Opin Pediatr 2018;30:30-9.
    Pubmed CrossRef
  59. Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011;118:6050-6.
    Pubmed KoreaMed CrossRef
  60. Heczey A, Louis CU, Savoldo B, et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther 2017;25:2214-24.
    Pubmed KoreaMed CrossRef
  61. Orentas RJ, Lee DW, Mackall C. Immunotherapy targets in pediatric cancer. Front Oncol 2012;2:3.
    Pubmed KoreaMed CrossRef
  62. Mineo JF, Bordron A, Quintin-Roue I, et al. Recombinant humanised anti-HER2/neu antibody (Herceptin) induces cellular death of glioblastomas. Br J Cancer 2004;91:1195-9.
    Pubmed KoreaMed CrossRef
  63. Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 2015;33:1688-96.
    Pubmed KoreaMed CrossRef
  64. Ahmed N, Brawley V, Hegde M, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol 2017;3:1094-101.
    Pubmed KoreaMed CrossRef
  65. Rainusso N, Brawley VS, Ghazi A, et al. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther 2012;19:212-7.
    Pubmed CrossRef
  66. Brown CE, Warden CD, Starr R, et al. Glioma IL13Ralpha2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS One 2013;8:e77769.
    Pubmed KoreaMed CrossRef
  67. Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016;375:2561-9.
    Pubmed KoreaMed CrossRef
  68. Majzner RG, Theruvath JL, Nellan A, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 2019;25:2560-74.
    Pubmed CrossRef
  69. Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 2015;21:524-9.
    Pubmed KoreaMed CrossRef
  70. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581-90.
    Pubmed KoreaMed CrossRef
  71. Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines:A review of recent developments and their potential pediatric application. Hum Vaccin Immunother 2016;12:2232-9.
    Pubmed KoreaMed CrossRef
  72. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004;10:475-80.
    Pubmed CrossRef
  73. Lee HJ, Kim SK, Cho D, Lee JJ. Cellular immunotherapy as a beacon of hope for hematological malignancies. Blood Res 2015;50:126-8.
    Pubmed KoreaMed CrossRef
  74. Krishnadas DK, Shusterman S, Bai F, et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGEA1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother 2015;64:1251-60.
    Pubmed CrossRef
  75. Krishnadas DK, Shapiro T, Lucas K. Complete remission following decitabine/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics 2013;131:e336-41.
    Pubmed CrossRef


April 2020, 27 (1)
Full Text PDF
Citation
Send to a friend
Twitter
Facebook

Cited By Articles
  • CrossRef (0)

Author ORCID Information
  • Jung Yoon Choi